I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr. mathew

B.Tech. Semester -6

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Aircraft structure-II	752 SURAJ R. 753 RAGINI	Unsymmetrical Bending * Principle axis method * Neutral axis method * Bending stress of Z section. * Bending stress of L section	14-1-2017 14-1-2017
02	Aircraft structure-II	754 YISHAL 756 GITESH	Bending stress calculation * Bending stress calculation using principle axis method. * Bending stress calculation using neutral axis method. * Bending stress calculation using K-Method.	14-1-2017 14-1-2017
03	Aircraft structure-II	727 ANKUR V. 728 MUHSIM	Application of unsymmetrical bending * Bending stress for mono spar and multispeed beam. * Bending stress distribution on stringer and ribs. * Design of lightening holes in wing structure.	21-1-2017
04	Aircraft structure-II	735 RAGHAV X.	Shear flow in closed section. * Concept of shear flow, ELastic axis shear centre. * Thin walled beam's analysis. * Calculation method of shear centre and shear flow.	21-1-2017
05	Aircraft structure-II	805 YASH K.	* Shear flow in thin walled bean * Shear flow of thin walked beam's in fuselage. * Shear flow of thin walled beam's in wing. * Shear flow of thin walled bean on tail plane unit.	28-01-2017

li li

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

Mr. Mathew

		, 	Mr. Marken	
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
06	Aircraft structure-II	806 DEEPAK G. 737 PIYUSH	Shear flow in unsymmetrical bean section * Shear on flow in channel c section * Shear flow in angle L section. * Application in aircraft structure components.	28-01-2017
07	Aircraft structure-II	808 AKALA DHAM 738 BADRI V.	* Application of bredt-batho formula. * Bred batho for close Loops. * Calculation of shear flow in and on rectangular rings.	28-01-2017
08	Aircraft structure-II	930 M. HAMDAH 473 VIVEK S.T.		28-01-2017
09	Aircraft structure-II	764 GOPAL JAT 800 PRITHVI 746 DEEPAK	* Shear flow in single and multicell under bending * Shear flow due to bending. * Graphical representation of shear flow in multicell. * Concept of effective and in effective cell bending of walls.	18-03-2017
10	Aircraft structure-II	770 SHASHIKAMF 801 AAKASH T	Buckling of plates. * Various condition of bucking and crippling stress. * Bucking of rectangular sheets under compression. * Application of short and long column.	11-02-2017
×* -		*		

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr. mathew

		·	mr. marken	
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
11	Aircraft structure-II	809 RAHUL K.	Needham's and Gerard's method. * Application of needham's method * Various end condition of needham's method. * Application of Gerard's method. * Calculation method for thin walled section.	11-02-2013
12	Aircraft structure-II	812 MAHOJ PAL 783 SHUBHAM H	Thin walled column strength. * Calculation of stiffness strength on stiffnes plates. * Calculation of effective width. * Thermal post bucking of aircraft wing.	04-03-2017
13	Aircraft structure-II	767 AMIT CH. 785 ISHWARYA	* Stress distribution or wing surface (Different place) * Stress distribution over fuselage system * Concept of dension field bean (Wagner's type.)	
14	Aircraft structure-II	771 MAMAN G. 786 S. AHRAR	* Relation between shear force & bending moment. * Shear force and bending moment diagram's for cantilever and semi cantilever beam. * Application of condition and semi cantilever beam.	
15	Aircraft structure-II	781 AKSHYAB.	Loads on Aircraft. * Type of load acting on aircraft during flight condition. * Lift distribution pattern on different planform. * V-N diagram application. * Effect of gust load.	04-03-2017

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr. Sanjay

S.No	Subject	Name of Student	Seminar Topic	J	Date of Seminar
01	Aircraft Design	742 SUNIL K.F. 707 MALAY	Proposing and fuel system integration. * Introduction * Propulsion selection * Jet engine integration * Proper engine integration	B-5	28-01-2017
02	Aircraft Design	745 AJEET S. 710 RAHUL R.	Landing gear geometry and arrangements * Introduction * Landing gear arrangements * Tire sizing * Shocking absorbers * Casting-wheel geometry * Gear retraction geometry	B-5	28-01-2017
03	Aircraft Design	747 ATHARVK	Aircraft subsystem * Hydraulics * Electrical system * Pneumatic system * Auxiliary/Emergency Power * Avionics	B-5	28-01-2017
04	Aircraft Design	749 GAURAV SI	Aerodynamic coefficients: * Introduction to lift and drag * Lift coefficient * Drag coefficient * Drag polar curves * Subsonic Lift-curve slope * Supersonic Lift-curve slope	· B-5	28-01-2017

I-04, RII	CO Industrial A	Area, Neemrana, Dist. Alw	var, Rajasthan Mr· San	1799	B.Tech. Semester -6
S.No	Subject	Name of Student	Seminar Topic	J (Date of Seminar
05	Aircraft Design	765 RAHUL S.	* Transonic Lift-curve slope * Non-liner lift effects * Maximum lift Loads on flight * Introduction * Loads categories * Air loads * Inertial loads * Power-Plant loads * Landing gear loads	B-6	25-02-2017
06	Aircraft Design	766 HIMAHSHU G.	Types of drags acting on an aircraft * Introduction * Transonic drag rise * Skin friction drag * Wave drag * Interference drag * Parasite drag * Induced drag	13-6	25-02-2017
07	Aircraft Design	778 ATUL	Airfoil selection in Aircraft design * Introduction * Airfoil selection procedures * Airfoil geometry * Leading edge radius * Selection of chord length and camber * Airfoil families	B-5	18-03-2017

I-04, RII	CO Industrial	B.Tech. Semester -6		
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
egennið	1 .	ATA SHUBHAM	 Early airfoils NACA airfoils (4 digit , 5 digit, 6 digit) Modern airfoils (Leaseman , Lieback , Super critical) 	
08	Aircraft Design	779 SHUBROW	Aircraft design process * Introduction to aircraft design * Phases of aircraft design - Conceptual design phase - Preliminary design phase - Detailed design phase * Mission profiles/ requirements for design initiation * Wing design process * Engine sizing	18-03-2017
09	Aircraft Design	739 ALIRAZA	 * Introduction * Gross take - off weight estimation * Empty weight estimation * Fuel-fraction estimation * Fuel fraction calculation based on mission segments. 	18-03-2017
10	Aircraft Design	741 RADHIKA	High lift devices * Introduction * Lift augmentation devices * Flaps and its types * Slots and its types	18-03-2017

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
			 * Slats and its types * Role and mechanism of working of high lift devices * Role of high lift devices during landing and take - off 	
11	Aircraft Design	737 PIYUSH	Boundary layer formation and control * Introduction to boundary layer * Boundary layer formation * Boundary layer thickness * Velocity profiles within boundary layer * Boundary layer separation * Flow reversal Boundary layer control - Boundary layer suction - Boundary layer blowing	
12	Aircraft Design	738 BADRIV.	Wing planforms in aircraft design * Introduction * Types of wing planforms * Rectangular wings * Elliptical wing theory * Tapered wings for elliptical lift distribution * Dihedral wings * Endaural wings * Swept back wings * Swept forward wings * Delta wings (For high speed performances)	15-04-2017

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr sanjay

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
13	Aircraft Design	n ka ka anana	VTOL aircraft design * Introduction * VTOL terminology * Fundamental problems of VTOL design * VTOL jet propulsion options	al to the stand probability and property and
			Vectoring nozzle types VTOL propulsion considerations Weight effects of VTOL Sizing effects of VTOL	
14	Aircraft Design		Aircraft flight controls * Introduction * Aircraft Lateral, longitudinal and vertical axis * Aircraft moments - Pitching moment - Yawing moment - Rolling moment * Flight controls - Pitching moment control using elevators - Yawing moment control using rudder - Rolling moment control using ailerons	
15	Aircraft Design		Aircraft engine controls * Introduction * Basic controls and indicators - Master switch - Throttle - Propeller control	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
a er erek yan			 Mixture control Ignition switch Tachometer Manifold pressure gauge Oil temperature gauge Oil pressure gauge * Fuel Fuel primer pump Fuel quantity gauge Fuel select valve Fuel pressure gauge Fuel boost pump switch * Cowl Cowl flap position control Cylinder head temperature gauge 	

I-04, RII	CO Industrial A	B.Tech. Semester -6		
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Computational Fluid Dynamics	727 - ANKUR V 728 MUHSIMI 724 DABHI M.	History and scope of CFD * Historical perspective with arising of need and invention * Current trends and areas of implementation * Future prospects	01-04-2017
02	Computational Fluid Dynamics	735 RAGHAU V	Brief overview of the governing equations of fluid flow * CFD is fluid dynamics with an adjective computational * Physical principles of fluid flow * Write the complete Navier Stokes equations * Write the equations for unsteady two dimensial inviscid flow. * Some comments on the governing equations	01-04-2017
03	Computational Fluid Dynamics	723 HIMALAY	 Requirement Types Differences between FDM, FVM and FEM, giving advantage and limitations. 	01-04-2017
04	Computational Fluid Dynamics	729 JAY PRAKASH	Unstructured grides- scope and future * Definition, explain difference from structure grides * Areas of application * Types of discretization suitables for these * Advantage and applications areas * Future	01-04-2017

I-04, RII	04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan			thew	B.Tech. Semester -6
S.No	Subject	Name of Student	Seminar Topic		Date of Seminar
05	Computational Fluid Dynamics	730 ROHIT	Numerical methods * Needs for numerical methods * Areas of applications of such methods * Relevance to computational fluid dynamics * Importance of algorithms	13~5 in a control and t	01-04-2017
06	Computational Fluid Dynamics	720 TAQUI	Experimental approach VS theoritical approach to find dynamics * Historical perspective giving meaning of the terms * Advantage and limitations of both approachs	above	·
07	Computational Fluid Dynamics	721 VIVER G.	Physical experiment VS numerical experiments * Meaning of the terms * Pros and cons	B-1_	15-04-2017
08	Computational Fluid Dynamics	722 VAISHALI	Boundary conditions and Intial conditions in CFD * Meaning * Requirements * Examples	B-5	15-04-2017
09	Computational Fluid Dynamics	711 FIROZ	Basis of finite volume methods * Advantages * Applications * Some theory	8-5	E- 01-04-2017
				u.	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr mathew

	· · · · · · · · · · · · · · · · · · ·		mr marhen	D. Tech. Gemester
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
10	Computational Fluid Dynamics	712 RAJAT	Basis of finite elements method * Some theory explaining the meaning * Applications * Advantages	3-5 01-04-2017
11	Computational Fluid Dynamics	715 NAQUIS.	Tranctation errors and consistency * Definition with examples	B-5 11-02-2017
12	Computational Fluid Dynamics	717 SAHIL S.	Maccoarmark scheme * Explanation with examples	B-5 11-02-2017 B-5 11-02-2017
13	Computational Fluid Dynamics	719 MAUJOT	Vecrtar and parallel computing * Definitions * Comparison * Areas of applications	B-5 11-02-2017
14	Computational Fluid Dynamics		Grid generation * Meaning * Methods like algebraic and PDF based * Need and applications	
15	Computational Fluid Dynamics		FDM applied to linear advnection * Conservation law * Meaning of convertion and diffusion * Derivation of convection diffusion equation	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr. Dwivedi.

S.No	Subject	Name of Student	Seminar Topic	010 2001	Date of Seminar
01	Aerodynamics-I	764 GOPAL J. 770 SHASHIKANT		B-5 B-5	21-01-2017 21-01-2017
02	Aerodynamics-I	773 AMUJ 774 MIKET	* Temperature Altitude * Pressure Altitude * Density Altitude * Geo-potential Altitude * Geometric Altitude * Homogenous Atmosphere * Hetrogenous Atmosphere * Lower Atmosphere * Middle Atmosphere * Upper Atmosphere * Physical Atmosphere	B-5-	21-01-2017

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr. Dwivedy

			INT DUTTERY	<u> </u>
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
03	Aerodynamics-I	789 DHARMEND	* Laminar Flow * Transition * Turbulence Flow * Renolds number * Shear stress in Laminar Flow * Laminar flow over flat plate * Newton's law of viscosity * Flow separation due to viscosity * Turbulent flow over flat plate * Shear stress in Laminar flow	18-02-2017
04	Aerodynamics-I	790 HIMANI	Boundary Layer * Laminar Boundary layer * Boundary layer thickness * Displacement Thickness * Momentum Thickness * Energy Thickness * Momentum Integral equation * Prandtl mixing length concept * Turbulent boundary layer thickness * Skin friction coefficient * Drag force calculation in Laminar boundary layer * Drag force calculation in turbulent boundary layer.	18-02-2017

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr Dwivedi

O5 Aerodynamics-I 743 VIKASH K. Generation of lift Basic concept * Uniform flow * Stream function & Potential function * Source & Sink flow * Stream function and potential function of source flow * Stream function and potential function of sink flow * Combination of source and sink flow (Doublet flow) * Stream function and potential function of doublet flow * Vortex flow and stream function vortex flow * Combination of uniform and doublet flow * Stream function and potential function of combine (uniform + doublet) flow				· · · · · · · · · · · · · · · · · · ·	Mr Daires	7
* Uniform flow * Stream function & Potential function * Source & Sink flow * Stream function and potential function of source flow * Stream function and potential function of sink flow * Combination of source and sink flow (Doublet flow) * Stream function and potential function of doublet flow * Vortex flow and stream function vortex flow * Combination of uniform and doublet flow * Stream function and potential function of combine (uniform + doublet) flow * Stream function and potential function of combine (uniform + Doublet) flow * Stream function and potential function * Radial velocity at radius R. * Angular velocity at radius R. * Pressure distribution over non-lifting cylinder	S.No Subject	S.No	Na	Name of Student	Seminar Topic	Date of Seminar
* Stream function and potential function of sink flow * Combination of source and sink flow (Doublet flow) * Stream function and potential function of doublet flow * Vortex flow and stream function vortex flow * Combination of uniform and doublet flow * Stream function and potential function of combine (uniform + doublet) flow Aerodynamics-I Aerodynamics-I Flow over non lifting & lifting cylinder * (Uniform + Doublet) flow * Stream function and potential function * Radial velocity at radius R. * Angular velocity at radius R. * Pressure distribution over non-lifting cylinder	05 Aerodynamics-I	05 A	cs-I 793	VIKASH K.	 * Uniform flow * Stream function & Potential function * Source & Sink flow 	18-02-2017
Aerodynamics-I 199 Pist (1777) Flow over non lifting & lifting cylinder * (Uniform + Doublet) flow * Stream function and potential function * Radial velocity at radius R. * Angular velocity at radius R. * Pressure distribution over non-lifting cylinder * Pressure distribution over non-lifting cylinder * (Uniform + Doublet) flow * Stream function * Radial velocity at radius R. * Pressure distribution over non-lifting cylinder * (Uniform + Doublet) flow * Stream function * Radial velocity at radius R. * Pressure distribution over non-lifting cylinder * (Uniform + Doublet) flow * (Stream function and potential function of sink flow Combination of source and sink flow (Doublet flow) Stream function and potential function of doublet flow Vortex flow and stream function vortex flow Combination of uniform and doublet flow Stream function and potential function of combine 	
* Stream function & Potential function * Radial velocity at radius R. * Angular velocity over lifting cylinder.	06 Aerodynamics-	06 A	cs-I 799	TAT MARIHERA F	* (Uniform + Doublet) flow * Stream function and potential function * Radial velocity at radius R. * Angular velocity at radius R. * Pressure distribution over non-lifting cylinder * (Uniform + Doublet + Vortex) flow * Stream function & Potential function * Radial velocity at radius R.	18-02-2017

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr. Devivedi

		9	1414 Doc	1000	II
S.No	Subject	Name of Student	Seminar Topic		Date of Seminar
07	Aerodynamics-I	751 SRIJAH S.	Generation of lift (Joukroski Theorem) * Joukroski Circulation theory * The Kutta condition * Joukowski Transformation * Transform circle into straight line * Transform circle into symmetrical airfoil * Transform circle into cambered airfoil	B-6	04-03-2017
08	Aerodynamics-I	757 MAHYU	Thin Airfloil Theory -Flat Plate * About thin Airfloil * Thin Airfloil equation for Flat Plat * Lift coefficient * Lift slope * Moment coefficient about near by edge * Moment coefficients about generator chord p * Aerodynamic center		64-03-2017
09	Aerodynamics-I	763 JIGYAMSHU	Thin Airflow Theory for Cambered airfloil * General thin airfoil equation * Cambered thin airfoil equation * Lift coefficient * Induced angle of attack * Lift slope * Moment coefficients about generator chord point * Aerodynamic centre	B-6	04-03-2017

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr Davivedi

			W. Darread	
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
10	Aerodynamics-I	708 AMAH DEEP	Infinite & Finite wing * Infinite wing * Lift calculation for Infinite wing * Drag calculation for Infinite wing * Moment calculation for Infinite wing	25-03-2017
enger sking over	is a sensimismus noidess is		* Finite wing * Lift calculation for finite wing * Drag calculation for finite wing * Induced angle of attack	25-03-2017
11	Aerodynamics-I	709 MAVEEM	Lifting line theory * Down wash * Effective angle of attack * Vortex line * Vortex filament * Bond vortex * Horse shoe vortex * Lifting line * Bio-savart law * Elliptical lift Distribution	
12	Aerodynamics-I	718 HARDEEP	0-/	25-03-2017

I-04, RII	CO Industrial A	rea, Neemrana, Dist. Alv	var, Rajasthan mr Daived	B.Tech. Semester -6
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
13	Aerodynamics-I	727 AHKUR	High speed wind tunnel * Blow down type wind tunnel * Induction type wind tunnel * Advantage & Disadvantage of blow down wind tunnel	01-04-2017
(40 B) (21 4		jir bijiya sila sigara ra ila sasar b	* Advantage & Disadvantage of Induction type wind tunnel * Intermittent type supersonic wind tunnel * Continues type supersonic wind tunnel * Effect of second throat in supersonic wind tunnel	01-04-2017
14	Aerodynamics-I	728 MUHSIM	Flow visualization Techniques * Smoke generator method * Chemical coating method * Interferometer method * Schlieren and shadow graph method * Hot-wire Anemometer to measure velocity	
15	Aerodynamics-I	735 RAGHAVV	* Basic feature of wire-type of balance * How to measure the Aerodynamic forces by wire-type balance * Basic feature of strut-type balance * How to measure the Aerodynamic forces by strut-type balance * Basic feature of platform type balance * How to measure the Aerodynamic forces by platform type balance * Basic feature of strain gauge type balance * Basic feature of strain gauge type balance * How to measure the Aerodynamic forces by this method	01-04-2017

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

Ms. Bhawna

			/115. 2.142	
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Digital Techniques	708 AMANDEEP 709 NAVEEN GAR - PATI	* Binary to octal conversion	14-1-2017
02	– Digital	718 HARDEEP	* Decimal to octal conversion * Octal arithmetic * Application Binary codes	14-1-2017
02	Techniques	PIO HAICO	* Verification of binary codes * BCD system * BCD addition * BCD subtraction * XS-3code * Gray code * User detecting codes * Error correcting codes	
03	Digital Techniques	787 RAJA KY	6 :-	25-02-2017

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

Ms. Bhawna

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
04	Digital Techniques	Y UHTHAMA 88F	Karnaugh map * Introduction * Basic diagram * 2 variable & 3 variable K-Map * SOP expression * POS expression * Applications	
05	Digital Techniques		Quite- Mc-cluskey method * Introduction to the method * Decimal representation * Don't care * Prime implicant chart * The branchingmethod * Applications	
06	Digital Techniques		Adders * Introduction to adders * Design procedure * The half adder * The full adder * Applications	
07	Digital Technique		Subtracters * Introduction to subtracters * Design procedure * The half subtracter * The full subtracter * Applications	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

Ms. Bhawna

			Mis. Bhawha	
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
08	Digital Technique	a takila ang sa	Code convertors * Introduction * Design of 4 bit binary to gray code convertor * Design of a 4 bit binary to BCD Code converter * Design of 4 bit BCD to XS-3 code converter * Applications	e hande e de 1 - 1 - 3 - 2 de lagrandar - 30 - 2 de julio pagazion debetan a
09	Digital Technique		Parity Bit Generation * Introduction * Parellel parity bit generator for harning codes * Design of or Even parety bit generator for a 4 * Basic 2 i/p MUX * 4 i/p MUX * Applications of MUX	
10	Digital Technique		Comparators * Introduction * 1-Bit magnitude comparator * 2-Bit magnitude comparator * 4-Bit magnitude comparator * IC Comparator * Application	
11	Digital Technique		Encoders * Introduction * Block diagrams * Equations * Octal to Binary encoders * Decimal to BCD Encoders * Application	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

Ms. Bhowna

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
12	Digital Technique	s salah sa salah sa sa sa salah sa salah sa sa	Decoders * Introductions * 3 to 8 Decoder * Enable input * BCD To decimal decoder * 4 to 16 decoder * Decoder application	en i sung gang anganggan sa
13	Digital Technique		Multiplexers * Introduction * Data selectors * Diagrams * Basic 2 i/p MUX * 4 i/p MUX * Applications	
14	Digital Technique		Hip Hop * Introduction * Classification of ieguential circuit * Hip-Hop operation characteristics * Conversion of hip hops * Application	
15	Digital Technique		Shift Registers * Introduction * Buffer Register * Controlled Buffer register	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

			Ms. Bhawna	
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
	,		* SISO * PISO * SIPO * PIPO	
16	Digital Technique		* Applications of shift registers Counters Interoduction Asynchronous counters Design of Asynchronous counters Synchronous counter Design of synchronous counters Applications	egin ekubaraskurusea er kritiskas art. Jugus vatus ese - 19 a ta
		\ .		

I-04, RIICO Industrial Area, Neemrana, Dist. Alw			O Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. mohapatra	
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
01	Mechanics of composite materials	794 MANISH 5	Classification of composites * Introduction * Classification criteria's * Difference	11-02-2017
02	Mechanics of composite materials	796 SAURAV K	* Adavantage/Disadvantage Different types of fibers * Explain different types of fibers * Their properties * Surface treatment of these fiber * Advantage /uses	11-02-2017
03	Mechanics of composite materials	804 HARSH A	Matric material * Introduction * Different types * Composition/ manufacturing * Properties * Advantage/disadvantage	11-02-2017
04	Mechanics of composite materials	731 JOEL P.	Manufacturing process 1st part * Introduction * Basic requirements of manufacturing methods * Explain - Open mould method - Continous method	25-03-2017

I-04, RII	fra B.Tech. Semester-6			
S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
05	Mechanics of composite materials	732 JEHIFER	Manufacturing process part-II * Introduction * Explain various types of "closed mold methods in detail"	
06	Mechanics of composite materials	733 PRASHAMT	Unidirectional composites * Introduction * Properties * Advantage/Disadvantage	25-03-2017
07	Mechanics of composite materials	734 SALEEM	Properties of composites part-1 * Explain the following for unidirectional composites * Volume Traction * Desity * Longitudnal strength & stifness * Factor affecting these properties	25-03-2017
08	Mechanics of composite materials		Properties of composites part-2 * Explain the following for unidirectional composites * Transverse strength & stifness * Shear modulus & strength * Poisson's ratio	
09	Mechanics of composite materials		Orthotropic lamina/composite * Introduction * Engineering constant & its relation with stiffness coefficients. * Strenght of orthotropic * Failure theories.	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr. mohapatra

S.No	Subject	Name of Student	Seminar Topic	Date of Seminar
10	Mechanics of composite materials	e di	Laminated composites * Analysis, Introduction * Lamination & delamination * Its requirement * Advantages	
	-	ž.	* Properties like stress & strain	26
·11	Mechanics of composite materials		Properties of laminates * Explain the following regarding laminates * Thermal & Moisture expansion * Mass diffusion * Transport properties * Isotropic analysis	
12	Mechanics of composite materials		Short fibre composites * Introduction * Explain - Advantage fibre - Stress - Strength - Short fibre - Stress, strength - Interlaminar shear - Fracture Toughness	

I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan

mr. mohapatra

S.No	Subject	Name of Student	Mr. Mohapatra Seminar Topic	Date of Seminar
0.110	Oubject		Oemmai Topic	Date of Selfillial
13	Mechanics of composite materials		Maintenance of composites * Classification of damage * Inspection * Repair operation	
7 T 1 2 1 4 C I		Les accedances and the second and and an experience of the second and an experience of the sec	* Repair procedure	Algebras de momento de la educación de la
14	Mechanics of composite materials		Various structure & precautions * Type of structure - Laminate - Honey comb - Sandwich * Light protection * Painting of composites	
15	Mechanics of composite materials		Quality control, application & advantage of composite over metal& alloys	
*	·			