I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. mathew B.Tech. Semester -6 | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--------------------------|----------------------------|---|------------------------| | 01 | Aircraft
structure-II | 752 SURAJ R.
753 RAGINI | Unsymmetrical Bending * Principle axis method * Neutral axis method * Bending stress of Z section. * Bending stress of L section | 14-1-2017
14-1-2017 | | 02 | Aircraft
structure-II | 754 YISHAL
756 GITESH | Bending stress calculation * Bending stress calculation using principle axis method. * Bending stress calculation using neutral axis method. * Bending stress calculation using K-Method. | 14-1-2017
14-1-2017 | | 03 | Aircraft
structure-II | 727 ANKUR V.
728 MUHSIM | Application of unsymmetrical bending * Bending stress for mono spar and multispeed beam. * Bending stress distribution on stringer and ribs. * Design of lightening holes in wing structure. | 21-1-2017 | | 04 | Aircraft
structure-II | 735 RAGHAV X. | Shear flow in closed section. * Concept of shear flow, ELastic axis shear centre. * Thin walled beam's analysis. * Calculation method of shear centre and shear flow. | 21-1-2017 | | 05 | Aircraft
structure-II | 805 YASH K. | * Shear flow in thin walled bean * Shear flow of thin walked beam's in fuselage. * Shear flow of thin walled beam's in wing. * Shear flow of thin walled bean on tail plane unit. | 28-01-2017 | li li I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan Mr. Mathew | | | , | Mr. Marken | | |------|--------------------------|---|--|-----------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 06 | Aircraft
structure-II | 806 DEEPAK G.
737 PIYUSH | Shear flow in unsymmetrical bean section * Shear on flow in channel c section * Shear flow in angle L section. * Application in aircraft structure components. | 28-01-2017 | | 07 | Aircraft
structure-II | 808 AKALA DHAM
738 BADRI V. | * Application of bredt-batho formula. * Bred batho for close Loops. * Calculation of shear flow in and on rectangular rings. | 28-01-2017 | | 08 | Aircraft
structure-II | 930 M. HAMDAH
473 VIVEK S.T. | | 28-01-2017 | | 09 | Aircraft
structure-II | 764 GOPAL JAT
800 PRITHVI
746 DEEPAK | * Shear flow in single and multicell under bending * Shear flow due to bending. * Graphical representation of shear flow in multicell. * Concept of effective and in effective cell bending of walls. | 18-03-2017 | | 10 | Aircraft
structure-II | 770 SHASHIKAMF
801 AAKASH T | Buckling of plates. * Various condition of bucking and crippling stress. * Bucking of rectangular sheets under compression. * Application of short and long column. | 11-02-2017 | | ×* - | | * | | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. mathew | | | · | mr. marken | | |------|--------------------------|--------------------------------|---|-----------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 11 | Aircraft
structure-II | 809 RAHUL K. | Needham's and Gerard's method. * Application of needham's method * Various end condition of needham's method. * Application of Gerard's method. * Calculation method for thin walled section. | 11-02-2013 | | 12 | Aircraft
structure-II | 812 MAHOJ PAL
783 SHUBHAM H | Thin walled column strength. * Calculation of stiffness strength on stiffnes plates. * Calculation of effective width. * Thermal post bucking of aircraft wing. | 04-03-2017 | | 13 | Aircraft
structure-II | 767 AMIT CH.
785 ISHWARYA | * Stress distribution or wing surface (Different place) * Stress distribution over fuselage system * Concept of dension field bean (Wagner's type.) | | | 14 | Aircraft
structure-II | 771 MAMAN G.
786 S. AHRAR | * Relation between shear force & bending moment. * Shear force and bending moment diagram's for cantilever and semi cantilever beam. * Application of condition and semi cantilever beam. | | | 15 | Aircraft
structure-II | 781 AKSHYAB. | Loads on Aircraft. * Type of load acting on aircraft during flight condition. * Lift distribution pattern on different planform. * V-N diagram application. * Effect of gust load. | 04-03-2017 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. Sanjay | S.No | Subject | Name of Student | Seminar Topic | J | Date of Seminar | |------|--------------------|------------------------------|---|----------|-----------------| | 01 | Aircraft
Design | 742 SUNIL K.F.
707 MALAY | Proposing and fuel system integration. * Introduction * Propulsion selection * Jet engine integration * Proper engine integration | B-5 | 28-01-2017 | | 02 | Aircraft
Design | 745 AJEET S.
710 RAHUL R. | Landing gear geometry and arrangements * Introduction * Landing gear arrangements * Tire sizing * Shocking absorbers * Casting-wheel geometry * Gear retraction geometry | B-5 | 28-01-2017 | | 03 | Aircraft
Design | 747 ATHARVK | Aircraft subsystem * Hydraulics * Electrical system * Pneumatic system * Auxiliary/Emergency Power * Avionics | B-5 | 28-01-2017 | | 04 | Aircraft
Design | 749 GAURAV SI | Aerodynamic coefficients: * Introduction to lift and drag * Lift coefficient * Drag coefficient * Drag polar curves * Subsonic Lift-curve slope * Supersonic Lift-curve slope | · B-5 | 28-01-2017 | | I-04, RII | CO Industrial A | Area, Neemrana, Dist. Alw | var, Rajasthan
Mr· San | 1799 | B.Tech. Semester -6 | |-----------|--------------------|---------------------------|---|------|---------------------| | S.No | Subject | Name of Student | Seminar Topic | J (| Date of Seminar | | 05 | Aircraft Design | 765 RAHUL S. | * Transonic Lift-curve slope * Non-liner lift effects * Maximum lift Loads on flight * Introduction * Loads categories * Air loads * Inertial loads * Power-Plant loads * Landing gear loads | B-6 | 25-02-2017 | | 06 | Aircraft
Design | 766 HIMAHSHU
G. | Types of drags acting on an aircraft * Introduction * Transonic drag rise * Skin friction drag * Wave drag * Interference drag * Parasite drag * Induced drag | 13-6 | 25-02-2017 | | 07 | Aircraft
Design | 778 ATUL | Airfoil selection in Aircraft design * Introduction * Airfoil selection procedures * Airfoil geometry * Leading edge radius * Selection of chord length and camber * Airfoil families | B-5 | 18-03-2017 | | I-04, RII | CO Industrial | B.Tech. Semester -6 | | | |-----------|--------------------|---------------------|---|-----------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | egennið | 1 . | ATA SHUBHAM | Early airfoils NACA airfoils (4 digit , 5 digit, 6 digit) Modern airfoils (Leaseman , Lieback , Super critical) | | | 08 | Aircraft
Design | 779 SHUBROW | Aircraft design process * Introduction to aircraft design * Phases of aircraft design - Conceptual design phase - Preliminary design phase - Detailed design phase * Mission profiles/ requirements for design initiation * Wing design process * Engine sizing | 18-03-2017 | | 09 | Aircraft
Design | 739 ALIRAZA | * Introduction * Gross take - off weight estimation * Empty weight estimation * Fuel-fraction estimation * Fuel fraction calculation based on mission segments. | 18-03-2017 | | 10 | Aircraft
Design | 741 RADHIKA | High lift devices * Introduction * Lift augmentation devices * Flaps and its types * Slots and its types | 18-03-2017 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--------------------|-----------------|---|-----------------| | | | | * Slats and its types * Role and mechanism of working of high lift devices * Role of high lift devices during landing and take - off | | | 11 | Aircraft
Design | 737 PIYUSH | Boundary layer formation and control * Introduction to boundary layer * Boundary layer formation * Boundary layer thickness * Velocity profiles within boundary layer * Boundary layer separation * Flow reversal Boundary layer control - Boundary layer suction - Boundary layer blowing | | | 12 | Aircraft
Design | 738 BADRIV. | Wing planforms in aircraft design * Introduction * Types of wing planforms * Rectangular wings * Elliptical wing theory * Tapered wings for elliptical lift distribution * Dihedral wings * Endaural wings * Swept back wings * Swept forward wings * Delta wings (For high speed performances) | 15-04-2017 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr sanjay | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|--------------------|-----------------|---|--| | 13 | Aircraft
Design | n ka ka anana | VTOL aircraft design * Introduction * VTOL terminology * Fundamental problems of VTOL design * VTOL jet propulsion options | al to the stand probability and property and | | | | | Vectoring nozzle types VTOL propulsion considerations Weight effects of VTOL Sizing effects of VTOL | | | 14 | Aircraft
Design | | Aircraft flight controls * Introduction * Aircraft Lateral, longitudinal and vertical axis * Aircraft moments - Pitching moment - Yawing moment - Rolling moment * Flight controls - Pitching moment control using elevators - Yawing moment control using rudder - Rolling moment control using ailerons | | | 15 | Aircraft
Design | | Aircraft engine controls * Introduction * Basic controls and indicators - Master switch - Throttle - Propeller control | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |---------------|---------|-----------------|--|-----------------| | a er erek yan | | | Mixture control Ignition switch Tachometer Manifold pressure gauge Oil temperature gauge Oil pressure gauge * Fuel Fuel primer pump Fuel quantity gauge Fuel select valve Fuel pressure gauge Fuel boost pump switch * Cowl Cowl flap position control Cylinder head temperature gauge | | | | | | | | | I-04, RII | CO Industrial A | B.Tech. Semester -6 | | | |-----------|---------------------------------|--|--|-----------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 01 | Computational
Fluid Dynamics | 727 - ANKUR V
728 MUHSIMI
724 DABHI M. | History and scope of CFD * Historical perspective with arising of need and invention * Current trends and areas of implementation * Future prospects | 01-04-2017 | | 02 | Computational
Fluid Dynamics | 735 RAGHAU V | Brief overview of the governing equations of fluid flow * CFD is fluid dynamics with an adjective computational * Physical principles of fluid flow * Write the complete Navier Stokes equations * Write the equations for unsteady two dimensial inviscid flow. * Some comments on the governing equations | 01-04-2017 | | 03 | Computational
Fluid Dynamics | 723 HIMALAY | Requirement Types Differences between FDM, FVM and FEM, giving advantage and limitations. | 01-04-2017 | | 04 | Computational
Fluid Dynamics | 729 JAY PRAKASH | Unstructured grides- scope and future * Definition, explain difference from structure grides * Areas of application * Types of discretization suitables for these * Advantage and applications areas * Future | 01-04-2017 | | I-04, RII | 04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | | | thew | B.Tech. Semester -6 | |-----------|---|-----------------|---|----------------------------|---------------------| | S.No | Subject | Name of Student | Seminar Topic | | Date of Seminar | | 05 | Computational
Fluid Dynamics | 730 ROHIT | Numerical methods * Needs for numerical methods * Areas of applications of such methods * Relevance to computational fluid dynamics * Importance of algorithms | 13~5
in a control and t | 01-04-2017 | | 06 | Computational
Fluid Dynamics | 720 TAQUI | Experimental approach VS theoritical approach to find dynamics * Historical perspective giving meaning of the terms * Advantage and limitations of both approachs | above | · | | 07 | Computational
Fluid Dynamics | 721 VIVER G. | Physical experiment VS numerical experiments * Meaning of the terms * Pros and cons | B-1_ | 15-04-2017 | | 08 | Computational
Fluid Dynamics | 722 VAISHALI | Boundary conditions and Intial conditions in CFD * Meaning * Requirements * Examples | B-5 | 15-04-2017 | | 09 | Computational
Fluid Dynamics | 711 FIROZ | Basis of finite volume methods * Advantages * Applications * Some theory | 8-5 | E- 01-04-2017 | | | | | | u. | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr mathew | | · · · · · · · · · · · · · · · · · · · | | mr marhen | D. Tech. Gemester | |------|---------------------------------------|-----------------|--|----------------------------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 10 | Computational
Fluid Dynamics | 712 RAJAT | Basis of finite elements method * Some theory explaining the meaning * Applications * Advantages | 3-5 01-04-2017 | | 11 | Computational
Fluid Dynamics | 715 NAQUIS. | Tranctation errors and consistency * Definition with examples | B-5 11-02-2017 | | 12 | Computational
Fluid Dynamics | 717 SAHIL S. | Maccoarmark scheme * Explanation with examples | B-5 11-02-2017
B-5 11-02-2017 | | 13 | Computational
Fluid Dynamics | 719 MAUJOT | Vecrtar and parallel computing * Definitions * Comparison * Areas of applications | B-5 11-02-2017 | | 14 | Computational
Fluid Dynamics | | Grid generation * Meaning * Methods like algebraic and PDF based * Need and applications | | | 15 | Computational
Fluid Dynamics | | FDM applied to linear advnection * Conservation law * Meaning of convertion and diffusion * Derivation of convection diffusion equation | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. Dwivedi. | S.No | Subject | Name of Student | Seminar Topic | 010 2001 | Date of Seminar | |------|----------------|-----------------------------|--|------------|-----------------------| | 01 | Aerodynamics-I | 764 GOPAL J. 770 SHASHIKANT | | B-5
B-5 | 21-01-2017 21-01-2017 | | 02 | Aerodynamics-I | 773 AMUJ
774 MIKET | * Temperature Altitude * Pressure Altitude * Density Altitude * Geo-potential Altitude * Geometric Altitude * Homogenous Atmosphere * Hetrogenous Atmosphere * Lower Atmosphere * Middle Atmosphere * Upper Atmosphere * Physical Atmosphere | B-5- | 21-01-2017 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. Dwivedy | | | | INT DUTTERY | <u> </u> | |------|----------------|-----------------|---|-----------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 03 | Aerodynamics-I | 789 DHARMEND | * Laminar Flow * Transition * Turbulence Flow * Renolds number * Shear stress in Laminar Flow * Laminar flow over flat plate * Newton's law of viscosity * Flow separation due to viscosity * Turbulent flow over flat plate * Shear stress in Laminar flow | 18-02-2017 | | 04 | Aerodynamics-I | 790 HIMANI | Boundary Layer * Laminar Boundary layer * Boundary layer thickness * Displacement Thickness * Momentum Thickness * Energy Thickness * Momentum Integral equation * Prandtl mixing length concept * Turbulent boundary layer thickness * Skin friction coefficient * Drag force calculation in Laminar boundary layer * Drag force calculation in turbulent boundary layer. | 18-02-2017 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr Dwivedi | O5 Aerodynamics-I 743 VIKASH K. Generation of lift Basic concept * Uniform flow * Stream function & Potential function * Source & Sink flow * Stream function and potential function of source flow * Stream function and potential function of sink flow * Combination of source and sink flow (Doublet flow) * Stream function and potential function of doublet flow * Vortex flow and stream function vortex flow * Combination of uniform and doublet flow * Stream function and potential function of combine (uniform + doublet) flow | | | | · · · · · · · · · · · · · · · · · · · | Mr Daires | 7 | |--|-------------------|------|----------|---------------------------------------|--|-----------------| | * Uniform flow * Stream function & Potential function * Source & Sink flow * Stream function and potential function of source flow * Stream function and potential function of sink flow * Combination of source and sink flow (Doublet flow) * Stream function and potential function of doublet flow * Vortex flow and stream function vortex flow * Combination of uniform and doublet flow * Stream function and potential function of combine (uniform + doublet) flow * Stream function and potential function of combine (uniform + Doublet) flow * Stream function and potential function * Radial velocity at radius R. * Angular velocity at radius R. * Pressure distribution over non-lifting cylinder | S.No Subject | S.No | Na | Name of Student | Seminar Topic | Date of Seminar | | * Stream function and potential function of sink flow * Combination of source and sink flow (Doublet flow) * Stream function and potential function of doublet flow * Vortex flow and stream function vortex flow * Combination of uniform and doublet flow * Stream function and potential function of combine (uniform + doublet) flow Aerodynamics-I Aerodynamics-I Flow over non lifting & lifting cylinder * (Uniform + Doublet) flow * Stream function and potential function * Radial velocity at radius R. * Angular velocity at radius R. * Pressure distribution over non-lifting cylinder | 05 Aerodynamics-I | 05 A | cs-I 793 | VIKASH K. | * Uniform flow * Stream function & Potential function * Source & Sink flow | 18-02-2017 | | Aerodynamics-I 199 Pist (1777) Flow over non lifting & lifting cylinder * (Uniform + Doublet) flow * Stream function and potential function * Radial velocity at radius R. * Angular velocity at radius R. * Pressure distribution over non-lifting cylinder * Pressure distribution over non-lifting cylinder * (Uniform + Doublet) flow * Stream function * Radial velocity at radius R. * Pressure distribution over non-lifting cylinder * (Uniform + Doublet) flow * Stream function * Radial velocity at radius R. * Pressure distribution over non-lifting cylinder * (Uniform + Doublet) flow (| | | | | Stream function and potential function of sink flow Combination of source and sink flow (Doublet flow) Stream function and potential function of doublet flow Vortex flow and stream function vortex flow Combination of uniform and doublet flow Stream function and potential function of combine | | | * Stream function & Potential function * Radial velocity at radius R. * Angular velocity over lifting cylinder. | 06 Aerodynamics- | 06 A | cs-I 799 | TAT MARIHERA F | * (Uniform + Doublet) flow * Stream function and potential function * Radial velocity at radius R. * Angular velocity at radius R. * Pressure distribution over non-lifting cylinder * (Uniform + Doublet + Vortex) flow * Stream function & Potential function * Radial velocity at radius R. | 18-02-2017 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. Devivedi | | | 9 | 1414 Doc | 1000 | II | |------|----------------|-----------------|--|------|-----------------| | S.No | Subject | Name of Student | Seminar Topic | | Date of Seminar | | 07 | Aerodynamics-I | 751 SRIJAH S. | Generation of lift (Joukroski Theorem) * Joukroski Circulation theory * The Kutta condition * Joukowski Transformation * Transform circle into straight line * Transform circle into symmetrical airfoil * Transform circle into cambered airfoil | B-6 | 04-03-2017 | | 08 | Aerodynamics-I | 757 MAHYU | Thin Airfloil Theory -Flat Plate * About thin Airfloil * Thin Airfloil equation for Flat Plat * Lift coefficient * Lift slope * Moment coefficient about near by edge * Moment coefficients about generator chord p * Aerodynamic center | | 64-03-2017 | | 09 | Aerodynamics-I | 763 JIGYAMSHU | Thin Airflow Theory for Cambered airfloil * General thin airfoil equation * Cambered thin airfoil equation * Lift coefficient * Induced angle of attack * Lift slope * Moment coefficients about generator chord point * Aerodynamic centre | B-6 | 04-03-2017 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr Davivedi | | | | W. Darread | | |------------------|--------------------------------|-----------------|---|-----------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 10 | Aerodynamics-I | 708 AMAH DEEP | Infinite & Finite wing * Infinite wing * Lift calculation for Infinite wing * Drag calculation for Infinite wing * Moment calculation for Infinite wing | 25-03-2017 | | enger sking over | is a sensimismus noidess
is | | * Finite wing * Lift calculation for finite wing * Drag calculation for finite wing * Induced angle of attack | 25-03-2017 | | 11 | Aerodynamics-I | 709 MAVEEM | Lifting line theory * Down wash * Effective angle of attack * Vortex line * Vortex filament * Bond vortex * Horse shoe vortex * Lifting line * Bio-savart law * Elliptical lift Distribution | | | 12 | Aerodynamics-I | 718 HARDEEP | 0-/ | 25-03-2017 | | I-04, RII | CO Industrial A | rea, Neemrana, Dist. Alv | var, Rajasthan mr Daived | B.Tech. Semester -6 | |--------------|-----------------|---------------------------------------|---|---------------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 13 | Aerodynamics-I | 727 AHKUR | High speed wind tunnel * Blow down type wind tunnel * Induction type wind tunnel * Advantage & Disadvantage of blow down wind tunnel | 01-04-2017 | | (40 B) (21 4 | | jir bijiya sila sigara ra ila sasar b | * Advantage & Disadvantage of Induction type wind tunnel * Intermittent type supersonic wind tunnel * Continues type supersonic wind tunnel * Effect of second throat in supersonic wind tunnel | 01-04-2017 | | 14 | Aerodynamics-I | 728 MUHSIM | Flow visualization Techniques * Smoke generator method * Chemical coating method * Interferometer method * Schlieren and shadow graph method * Hot-wire Anemometer to measure velocity | | | 15 | Aerodynamics-I | 735 RAGHAVV | * Basic feature of wire-type of balance * How to measure the Aerodynamic forces by wire-type balance * Basic feature of strut-type balance * How to measure the Aerodynamic forces by strut-type balance * Basic feature of platform type balance * How to measure the Aerodynamic forces by platform type balance * Basic feature of strain gauge type balance * Basic feature of strain gauge type balance * How to measure the Aerodynamic forces by this method | 01-04-2017 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan Ms. Bhawna | | | | /115. 2.142 | | |------|-----------------------|--|--|-----------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 01 | Digital
Techniques | 708 AMANDEEP
709 NAVEEN GAR
- PATI | * Binary to octal conversion | 14-1-2017 | | 02 | –
Digital | 718 HARDEEP | * Decimal to octal conversion * Octal arithmetic * Application Binary codes | 14-1-2017 | | 02 | Techniques | PIO HAICO | * Verification of binary codes * BCD system * BCD addition * BCD subtraction * XS-3code * Gray code * User detecting codes * Error correcting codes | | | 03 | Digital
Techniques | 787 RAJA KY | 6 :- | 25-02-2017 | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan Ms. Bhawna | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|-----------------------|-----------------|--|-----------------| | 04 | Digital
Techniques | Y UHTHAMA 88F | Karnaugh map * Introduction * Basic diagram * 2 variable & 3 variable K-Map * SOP expression * POS expression * Applications | | | 05 | Digital
Techniques | | Quite- Mc-cluskey method * Introduction to the method * Decimal representation * Don't care * Prime implicant chart * The branchingmethod * Applications | | | 06 | Digital
Techniques | | Adders * Introduction to adders * Design procedure * The half adder * The full adder * Applications | | | 07 | Digital
Technique | | Subtracters * Introduction to subtracters * Design procedure * The half subtracter * The full subtracter * Applications | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan Ms. Bhawna | | | | Mis. Bhawha | | |------|----------------------|---|---|--| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 08 | Digital
Technique | a takila ang sa | Code convertors * Introduction * Design of 4 bit binary to gray code convertor * Design of a 4 bit binary to BCD Code converter * Design of 4 bit BCD to XS-3 code converter * Applications | e hande e de 1 - 1 - 3 - 2 de lagrandar - 30 - 2 de julio pagazion debetan a | | 09 | Digital
Technique | | Parity Bit Generation * Introduction * Parellel parity bit generator for harning codes * Design of or Even parety bit generator for a 4 * Basic 2 i/p MUX * 4 i/p MUX * Applications of MUX | | | 10 | Digital
Technique | | Comparators * Introduction * 1-Bit magnitude comparator * 2-Bit magnitude comparator * 4-Bit magnitude comparator * IC Comparator * Application | | | 11 | Digital
Technique | | Encoders * Introduction * Block diagrams * Equations * Octal to Binary encoders * Decimal to BCD Encoders * Application | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan Ms. Bhowna | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------------|---|---|---| | 12 | Digital
Technique | s salah sa salah sa sa sa salah sa salah sa sa sa salah sa sa sa salah sa sa sa salah sa sa sa salah sa | Decoders * Introductions * 3 to 8 Decoder * Enable input * BCD To decimal decoder * 4 to 16 decoder * Decoder application | en i sung gang anganggan sa | | 13 | Digital
Technique | | Multiplexers * Introduction * Data selectors * Diagrams * Basic 2 i/p MUX * 4 i/p MUX * Applications | | | 14 | Digital
Technique | | Hip Hop * Introduction * Classification of ieguential circuit * Hip-Hop operation characteristics * Conversion of hip hops * Application | | | 15 | Digital
Technique | | Shift Registers * Introduction * Buffer Register * Controlled Buffer register | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan | | | | Ms. Bhawna | | |------|----------------------|-----------------|---|--| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | | , | | * SISO
* PISO
* SIPO
* PIPO | | | 16 | Digital
Technique | | * Applications of shift registers Counters Interoduction Asynchronous counters Design of Asynchronous counters Synchronous counter Design of synchronous counters Applications | egin ekubaraskurusea er kritiskas art. Jugus vatus ese - 19 a ta | | | | | | | | | | \ . | | | | I-04, RIICO Industrial Area, Neemrana, Dist. Alw | | | O Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. mohapatra | | |--|----------------------------------|-----------------|--|-----------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 01 | Mechanics of composite materials | 794 MANISH 5 | Classification of composites * Introduction * Classification criteria's * Difference | 11-02-2017 | | 02 | Mechanics of composite materials | 796 SAURAV K | * Adavantage/Disadvantage Different types of fibers * Explain different types of fibers * Their properties * Surface treatment of these fiber * Advantage /uses | 11-02-2017 | | 03 | Mechanics of composite materials | 804 HARSH A | Matric material * Introduction * Different types * Composition/ manufacturing * Properties * Advantage/disadvantage | 11-02-2017 | | 04 | Mechanics of composite materials | 731 JOEL P. | Manufacturing process 1st part * Introduction * Basic requirements of manufacturing methods * Explain - Open mould method - Continous method | 25-03-2017 | | I-04, RII | fra B.Tech. Semester-6 | | | | |-----------|----------------------------------|-----------------|---|-----------------| | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | | 05 | Mechanics of composite materials | 732 JEHIFER | Manufacturing process part-II * Introduction * Explain various types of "closed mold methods in detail" | | | 06 | Mechanics of composite materials | 733 PRASHAMT | Unidirectional composites * Introduction * Properties * Advantage/Disadvantage | 25-03-2017 | | 07 | Mechanics of composite materials | 734 SALEEM | Properties of composites part-1 * Explain the following for unidirectional composites * Volume Traction * Desity * Longitudnal strength & stifness * Factor affecting these properties | 25-03-2017 | | 08 | Mechanics of composite materials | | Properties of composites part-2 * Explain the following for unidirectional composites * Transverse strength & stifness * Shear modulus & strength * Poisson's ratio | | | 09 | Mechanics of composite materials | | Orthotropic lamina/composite * Introduction * Engineering constant & its relation with stiffness coefficients. * Strenght of orthotropic * Failure theories. | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. mohapatra | S.No | Subject | Name of Student | Seminar Topic | Date of Seminar | |------|----------------------------------|--|---|-----------------| | 10 | Mechanics of composite materials | e di | Laminated composites * Analysis, Introduction * Lamination & delamination * Its requirement * Advantages | | | | - | ž. | * Properties like stress & strain | 26 | | ·11 | Mechanics of composite materials | | Properties of laminates * Explain the following regarding laminates * Thermal & Moisture expansion * Mass diffusion * Transport properties * Isotropic analysis | | | 12 | Mechanics of composite materials | | Short fibre composites * Introduction * Explain - Advantage fibre - Stress - Strength - Short fibre - Stress, strength - Interlaminar shear - Fracture Toughness | | I-04, RIICO Industrial Area, Neemrana, Dist. Alwar, Rajasthan mr. mohapatra | S.No | Subject | Name of Student | Mr. Mohapatra Seminar Topic | Date of Seminar | |-----------------|----------------------------------|--|--|---| | 0.110 | Oubject | | Oemmai Topic | Date of Selfillial | | 13 | Mechanics of composite materials | | Maintenance of composites * Classification of damage * Inspection * Repair operation | | | 7 T 1 2 1 4 C I | | Les accedances and the second and and an experience of the second sec | * Repair procedure | Algebras de momento de la educación de la | | 14 | Mechanics of composite materials | | Various structure & precautions * Type of structure - Laminate - Honey comb - Sandwich * Light protection * Painting of composites | | | 15 | Mechanics of composite materials | | Quality control, application & advantage of composite over metal& alloys | | | * | · | | | | | | | | | |